Cerebras Systems builds the world's largest AI chip, 56 times larger than GPUs. Our novel wafer-scale architecture provides the AI compute power of dozens of GPUs on a single chip, with the programming simplicity of a single device. This approach allows Cerebras to deliver industry-leading training and inference speeds and empowers machine learning users to effortlessly run large-scale ML applications, without the hassle of managing hundreds of GPUs or TPUs.
Cerebras' current customers include global corporations across multiple industries, national labs, and top-tier healthcare systems. In January, we announced a multi-year, multi-million-dollar partnership with Mayo Clinic, underscoring our commitment to transforming AI applications across various fields. In August, we launched Cerebras Inference, the fastest Generative AI inference solution in the world, over 10 times faster than GPU-based hyperscale cloud inference services.
About The Role
Engineers on the inference performance team operate at the intersection of hardware and software, driving end-to-end model inference speed and throughput. Their work spans low-level kernel performance debugging and optimization, system-level performance analysis, performance modeling and estimation, and the development of tooling for performance projection and diagnostics.
Responsibilities
- Build performance models (kernel-level, end-to-end) to estimate the performance of state of the art and customer ML models.
- Optimize and debug our kernel micro code and compiler algorithms to elevate ML model inference speed, throughput and compute utilization on the Cerebras WSE.
- Debug and understand runtime performance on the system and cluster.
- Develop tools and infrastructure to help visualize performance data collected from the Wafer Scale Engine and our compute cluster.
Requirements
- Bachelors / Masters / PhD in Electrical Engineering or Computer Science.
- Strong background in computer architecture.
- Exposure to and understanding of low-level deep learning / LLM math.
- Strong analytical and problem-solving mindset.
- 3+ years of experience in a relevant domain (Computer Architecture, CPU/GPU Performance, Kernel Optimization, HPC).
- Experience working on CPU/GPU simulators.
- Exposure to performance profiling and debug on any system pipeline.
- Comfort with C++ and Python.
Why Join Cerebras
People who are serious about software make their own hardware. At Cerebras we have built a breakthrough architecture that is unlocking new opportunities for the AI industry. With dozens of model releases and rapid growth, we’ve reached an inflection point in our business. Members of our team tell us there are five main reasons they joined Cerebras:
- Build a breakthrough AI platform beyond the constraints of the GPU.
- Publish and open source their cutting-edge AI research.
- Work on one of the fastest AI supercomputers in the world.
- Enjoy job stability with startup vitality.
- Our simple, non-corporate work culture that respects individual beliefs.
Read our blog: Five Reasons to Join Cerebras in 2025.
Apply today and become part of the forefront of groundbreaking advancements in AI!
Cerebras Systems is committed to creating an equal and diverse environment and is proud to be an equal opportunity employer. We celebrate different backgrounds, perspectives, and skills. We believe inclusive teams build better products and companies. We try every day to build a work environment that empowers people to do their best work through continuous learning, growth and support of those around them.
This website or its third-party tools process personal data. For more details, click here to review our CCPA disclosure notice.
Sponsored